1.0 Introduction

The Model 227-3 is a completely self-contained Gas Tungsten Arc Welding (GTAW) System requiring only input power, inert gas and AMI Welding Head (or manual torch) for operation. Its small size makes it useful in field applications where portability is required. It is intended for (but not limited to) automatic orbital welding applications that require the addition of filler material.

The M-227-3-3 employs a constant-current Line Inverter as the Weld Current Power source and a 16-bit microprocessor with memory for control of all system functions. All functions are accurate and repeatable to better than +/- 1% providing that line voltage fluctuations and ambient temperature are within the stated limits.

All welding function parameters (weld schedules) are entered via the computer key pad and display. All steps for entering these values are prompted by the display in plain language, no computer language or codes are needed. Weld parameters for each specific application are only entered one time and are then retained within the system memory (by schedule number).

The M-227-3-3 is built in a rugged housing that is designed to be portable. Operating AC power is supplied by line cord and gas is supplied by flexible hosing, so permanent connections are not required. The system requires an inert gas source with pressure regulator and flow meter (not supplied).

The chassis and power source are air-cooled. Torches and weld heads requiring liquid-cooling must use the Model 227-CW Cooling Unit which attaches to the M-227-3 to retain system portability.

Multi-level pulsed current, torch rotation speed, filler wire feed speed and timing controls allow the establishment of optimum welding procedures on a large variety of materials, sizes and wall thicknesses.

This document details operating ranges, construction and general use. For specific information about operation, consult the Model 227 Operation Manual.

2.0 Features and System Configuration

2.1 Standard Features: The following are general features described in this specification.

1. All functions microprocessor-controlled.
2. Large built-in weld procedure memory storage.
3. Ability to create, copy and modify schedules.
4. 10/250 Amperes of straight polarity GTAW current.
5. Operation on 3-Phase 240 VAC +/- 10% standard.
6. Pulsed current controls from 0.05 to 50 PPS.
7. Multi-Levels of pulsed current values.
SPECIFICATION NO. 227-3

Model 227-3 Automatic GTAW Welding System

2.0 Features and System Configuration (continued)

8. Continuous or stepped arc rotation controls.
9. Continuous or pulsed filler Wire Feed controls.
10. In sequence function value operator override and ability to limit amount of operator override.
11. Torch Oscillation and Arc Voltage (arc gap) Controls.
12. Operates a variety of AMI Weld Heads.
14. Complete automatic operation and timing controls including pre-purge, post-purge, upslope, down-slope, function start, and stop delays and level times.
15. Built-in fault checks for system status and common operation errors (gas check, coolant check, etc.)
16. Multi-lingual display instructions in English, French or German (other languages available).
17. Built-in printer for recording weld procedures.

2.2 System Configuration:

1. Main Power Supply console including:
 1. 25-foot input power cord.
 2. 250 Ampere inverter power source.
 4. Main computer electronics (weld functions)
 5. Input gas panel.
 6. Weld head connect panel including ground, electrode, weld head electrical connectors, gas output connectors, remote pendant connector and auxiliary connector.
 7. 2 line by 40 character display (2 each).
 8. Membrane key panel including numeric keys and all set up, start/stop keys (jog, purge, etc.) and program selection keys.

2. 15-Foot Weld Head Adapter Cable including
 1. Weld head arc gas hose.
 2. Electrode cable.
 4. Weld head electrical cable.
2.0 **Features and System Configuration** (continued)

2.3 **Enclosure Physical Construction**

1. Material: Aluminum
2. Height: 14.9" (376.9 mm) cover closed
 13.9" (336.2 mm) cover removed
3. Width: 22.75" (577.9 mm)
4. Depth: 19.25" (489.0 mm) including handle
5. Weight: 88 lb. (39.9 kg)

3.0 **Input Power, Inert Gas and Temperature Requirements**

3.1 **Input Power**: The M-227-3, as standard, can operate on three phase AC input power as follows:

240 VAC + 10%, -10%, 50/60 Hz, 30 ampere service

+/- % indicates the allowable input voltage fluctuation to maintain performance as specified. “Ampere service” rating is based on maximum welding current output (10 to 250 Ampere) with maximum Arc Voltage (20 VDC).

3.2 **Inert Gas**: The M-227-3 is a Gas Tungsten Arc Welding (GTAW) Power Source only and as such requires Inert or Inert/Active Mixed Gas for operation. The Arc Gas Line is provided with an Automatic/Manual Solenoid which controls the pre-weld, weld and post-weld purging of the weld zone.

Input gas pressure must be regulated, by the user, to a maximum of 50 PSI +/- 5 PSI (3.4 +/- 0.3 bar).

Connection to the gas source is via color-coded impermeable hosing (to prevent oxygen and water diffusion) and standard 5/8-16 NPT Gas fittings.

3.3 **Temperature**: The M-227-3 is designed to operate in an ambient temperature range between 0°C (32°F) and 45°C (110°F).

4.0 **Weld Current Source and Controls**

4.1 Output current: 3 to 250 Amperes using 240 VAC.
4.0 Weld Current Source and Controls (continued)

4.2 Voltage: 20 to 30 VDC open circuit (no current), 5 (min.) to 20 (max.) VDC at 250 Amperes.

4.3 Regulation: Constant current, straight polarity. +/- 1% of program setting or 0.5 Ampere (whichever is greater) with input power fluctuations of +/- 10%.

4.4 Regulation type: Line inverter using 35 KHz switching frequency, microprocessor closed loop, real-time monitoring with solid-state, high-speed switching regulation devices.

4.5 Duty cycle: 100% at specified operating temperature and specified input VAC.

4.6 Current controls: The system provides two (2) methods of current operation. Continuous (Cont.) mode or Pulsed mode. The Cont. mode sets the system to regulate a single desired value of current. In the Pulsed mode, the system will automatically pulse between one desired current and another to perform pulsed arc-welding.

In addition, the system provides (in either mode) the ability to automatically program changes in the current value. These changes are called “Levels” and the system can provide up to 100 Level changes per automatic weld sequence.

The desired current values, current mode, desired pulsation rate (pulse times) and current Level values are entered into the microprocessor memory (via keypad) and filed by weld number/type/description.

5.0 Pulsed Arc Current

If desired, two (2) current values can be selected. The “high” current is designated the Primary current and the “low” current is designated the Background current. The frequency or pulse rate of switching between these currents is controlled by the Primary and Background Pulse time function with the following range:

Primary Pulse Time: 0.01 to 10.00 seconds, +/- 0.001
Background Pulse Time: 0.01 to 10.00 seconds, +/- 0.001

This equates to a pulse frequency range of 0.05 to 50.00 pulses per second. Pulse width adjustment is a function of the Primary time versus the Background time.

6.0 Fixture Rotation Servo and Controls

The M227-3 is intended to (but not limited to) operate most AMI Orbital Welding Heads. These heads rotate the torch around the stationary tube, pipe or fitting to be welded. The M227-3 is equipped standard with a Rotation Servo and controls to drive the Weld head Rotation Motor.

6.1 Rotation Speed: Range dependent on weld head type.

There are over 35 weld head types that can be driven by the M-227-3. Some are controlled by RPM and some by IPM. The M-227-3 automatically changes its rotation or travel speed range and measurement unit depending on what weld head is being used.
6.0 Fixture Rotation Servo and Controls (continued)

6.2 Rotation Regulation: Closed-loop servo using tachometer feedback with regulation to +/- 1%.

NOTE: The Servo is rated to +/- 1% over its specified range. Some weld heads have low speed minimums greater than 1%. Consult the individual head specification for details.

6.3 Rotation Controls: The system provides two (2) methods of rotation control. Continuous (Cont.) mode and Stepped mode. The Cont. mode sets the system to regulate a single desired value of speed. In the Stepped mode, the system will automatically pulse between a desired Primary speed and a desired Background speed to perform Stepped arc-welding. The Stepping is synchronized to the Current Pulsations.

The desired speed value and speed mode are entered into the microprocessor memory (via keypad) and filed by weld number/type/description.

7.0 Wire Feed Servo and Controls

The M227-3 is intended to (but not limited to) operate AMI Orbital Welding Heads with Filler Wire Feed capability. The M-227-3 is equipped standard with a Wire Feed Servo and controls to drive the Weld Head Wire Feed Motor.

7.1 Wire Feed Speed: Range dependent on weld head type.

There are over 35 weld head types that can be driven by the M-227-3. More than 10 of these provide Wire Feed mechanics and the speed range can vary depending on the weld head type. The M-227-3 automatically changes its Wire Feed Range depending on what weld head is being used.

7.2 Wire Feed Regulation: Closed-Loop Servo using tachometer feedback with regulation to +/- 1% or 1 IPM whichever is greater.

7.3 Wire Feed Controls: The system provides two (2) methods of wire feed control. Continuous (Cont.) mode and Pulsed mode. The Cont. mode sets the system to regulate a single desired value of wire. In the Pulsed mode, the system will automatically pulse between a desired Primary speed and a desired Background speed to perform pulsed arc-welding. The pulsations are synchronized to the Current Pulsation's.

The desired wire feed speeds and wire feed mode are entered into the microprocessor memory (via keypad) and filed by weld number/type/description.

8.0 Arc Start System

A High Frequency (HF) Arc Starter is provided, with a booster that momentarily increases the open circuit voltage during Arc Start. The HF starter will reliably start the arc at current levels of 5 amps in Argon and 10 amps in Helium using a suitably prepared ceriated tungsten electrode with an arc gap of 0.080 inch or less, with weld head cables of 100 feet or less.
8.0 Arc Start System (continued)
Protective devices are installed in the HF starter and at suitable points in the system to prevent HF feed through the power lines or to internal, sensitive components. The Starting Frequency is approximately 10 MHz and will vary with components and cables.

9.0 Metering
During the weld sequence, one of the displays provides sliding scale indicators which display Amperes, Arc Volts Rotation Speed and Wire Feed Speed.

The meters are intended as an information and trouble-shooting guide and are not intended to be used for Quality Control or calibration purposes.

10.0 Microprocessor
The M227-3 contains a 16-bit microprocessor with BATRAM memory. The microprocessor has operating software which supplies all of the standard functions of this Specification. All standard commands are inputted into the microprocessor via the display panel keys. All steps of operation and programming are prompted by the displays (in English, French or German) contained in the display panel.

11.0 EMI Suppression
The M227-3 is equipped with a heavy-duty Pi-Network filter, connected to the input power line, to prevent propagation of EMI either into or out of the M-227-3. All-metal enclosures and internal shields prevent radiated EMI.

12.0 Operation, Modes
The M227-3 has three (3) basic modes of operation. The modes are selected via a 3-way keylock mode switch. The key can be removed to lock the system into any of its three modes as described below:

12.1 Operate Mode: The operate mode is really two-fold: Non-welding Functions and Automatic Weld Sequence. The following describes these two Operate Modes:

Non-Welding
1. Operator selection of the desired weld schedule contained in the system memory.
2. Operator “override” control for Current, Travel Speed, Wire Feed Speed and time functions. Limits to “override” can be pre-programmed.
3. Weld set-up controls for jogging the weld head electrode to the desired start position.
12.0 Operation, Modes (continued)

5. Manual sequence stop for operator interruption of the weld sequence with normal stopping functions.

6. “All Stop” function for operator interruption of normal weld sequence without normal stopping sequence (post-purge only).

7. Automatic fault detection for gas flow, coolant flow, overheating, etc. Engages “All Stop” automatically.

Automatic Weld Sequence: Sequence Start is initiated by the operator and the following events occur automatically in the sequence described below:

8. Pre-purge Time: 0 to 999 seconds with automatic initiation of arc gas solenoid at beginning of sequence.

10. Arc Detection: After Arc Initiation, the M227-3 will detect if there is an arc. If arc start is not successful, it will notify the operator to start over; if successful, the following will all start at the same time:

Current Upslope Time: 0.0 to 99.9 seconds. The current will rise during this time to its maximum programmed value.

Rotation Start Delay Time: 0.0 to 99.9 seconds. Arc rotation will be delayed for the programmed time to achieve penetration before moving.

Wire Feed Start Delay Time: 0.0 to 99.9 seconds. Wire Feed will be delayed for the programmed time to achieve penetration before adding filler.

Pulsation Timers: 0.01 to 9.99 Primary, 0.01 to 9.99 Background (if pulse mode is programmed).

Level 1 Time: 000 to 999 seconds. This programmed function sets the period of time that the level 1 primary current value will be used before switching to level 2 or end of sequence.

11. Levels: After upslope and/or start delays the current, travel speed and wire feed speed will be at the fill level 1 Primary and Background values (if pulsing) until the level 1 time has been completed.

Up to 99 levels can be programmed and the system will advance from level to level as each level time is completed. When the last level time (1, 2, 3, 8, 12, etc.) is complete, the system will “Sequence Stop” automatically.

12. Sequence Stop: When the last programmed level time is over, the system will do the following:
12.0 Operation, Modes (continued)

Downslope Time: 0 to 99.9 seconds. The current will progress to 0 Amperes during this time. When the current is less than 3 Amperes, the Arc will go off.

Rotation Delay: The arc will continue to rotate for the same time as the downslope and stop rotating when the arc goes out.

Wire Feed Stop Delay: The wire will continue to feed for this amount of time and then stop.

13. Post-purge Time: 0 to 999 seconds. When the arc goes out the gas will continue to flow until this programmed time is complete.

14. Return-to-Home and Reset: When the post-purge time is complete, the arc gas solenoid will turn off and heads with this feature will automatically return to the “open” position for Head removal. The system will reset to be able to repeat the sequence on the next weld (not all heads have return-to-home).

12.2 Operate Lock Mode

When the three-way keylock is in this position, the selected weld schedule cannot be changed. If the key is removed, this will prevent anyone from changing the set-up of the system.

12.3 Weld Programming

The programming mode is engaged by the operating mode keylock switch which can be locked in the programming position. When engaged in the programming mode, the M227-3 will perform the following.

1. The display will ask if the user wants to Create a new weld schedule, Copy an existing schedule, Modify an existing schedule, Transfer the weld schedule memory to another M227-3 or Delete a weld schedule.

2. When the above choice is made the display will prompt the programmer for each step.

3. See the M227-3 operation manual for further programming details.

12.4 Printer

The M227-3 is supplied standard with a printer and print select key. The printer can issue a copy of the following items:

1. A complete list of all weld schedules in memory including day and date of print.

2. A complete copy of all program parameters for any particular weld schedule including day and date of print. The system can be set up to issue a copy of this automatically after every weld.
12.0 Operation, Modes (continued)

3. A complete copy of all actual function values during a weld including day and date of print and a statement as to whether or not the functions performed as programmed.

4. A complete copy of all weld numbers contained in the optional M227-3-EMM (External Memory Module).

13.0 Additional Standard Features

13.1 Tenth Increments: The system can be set up to be able to program amperes and weld level time in increments of 0.1 instead of the standard 1 amp or 1 second.

13.2 External Sensor Fault: In addition to the built-in faults (gas, coolant, voltage, etc.) the system can be set up to accept fault information from other sources such as an Oxygen Analyzer or Temperature Monitor.

13.3 Speed Math Function: M-9 and M-95 Heads rotation is entered in RPM. Since the actual welding speed (surface speed) for any given RPM value changes as the weld diameter changes, the system can calculate the required RPM setting for any given weld diameter. By entering the weld O.D. and the desired welding speed, the system will automatically calculate and display the correct RPM setting.

13.4 Tungsten Length Math Function: Allows the system to calculate required tungsten length.

13.5 Operator Override: The operator can change the value of welding functions before and during a weld sequence. Limits to operator input can be pre-programmed into the original weld schedule.

13.6 Remote Equipment Start/Stop: The M227-3 has input and output connectors to allow for the connection of external devices such as lathes or mills that may need to turn on during the welding sequence.

13.7 Remote Operators Pendant: The M227-3 comes standard with an M-227-3-RP Remote Pendant with 50’ of cable. This unit allows the operator to perform weld head set-up, weld initiation and control and function value override from the RP instead of at the M227-3 Panel.

14.0 Options

14.1 M207-3-CW Cooling Unit Package: An add-on liquid-cooling unit for weld heads with duty cycles and weld currents requiring liquid-cooling of the weld head or manual torch.

14.2 M-207-EMM External Memory Module: Used to store, transfer or back-up copies of the M227-3 memory.

14.3 Chart Recorder: The M277 is supplied standard with a Chart Recorder Output Port. When the optional chart recorder is connected, the user can record the Amperes, Voltage, Wire Feed Speed and Travel Speed in continuous "real time" information.
SPECIFICATION NO. 227-3
Model 227-3 Automatic GTAW Welding System

14.0 Options (continued)

14.4 Manual Welding Foot Controller: Provides sequence start/stop variable current. This option is required for manual welding.

14.5 Manual Welding Torch

14.6 Extension Cables: For operation of weld heads or manual torches up to 100 feet from the M227-3.

14.7 AVC/Oscillator Option: This option allows the M227-3 to operate weld heads with Motorized Arc Voltage Control (AVC) and Motorized Torch Cross-Seam Adjust (steering) and provide Torch Oscillation (weave) during the weld. (THIS OPTION NOT YET AVAILABLE)

THIS SPECIFICATION IS SUBJECT TO CHANGE WITHOUT NOTICE